If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+(2x)^2=125
We move all terms to the left:
x^2+(2x)^2-(125)=0
We add all the numbers together, and all the variables
3x^2-125=0
a = 3; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·3·(-125)
Δ = 1500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1500}=\sqrt{100*15}=\sqrt{100}*\sqrt{15}=10\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{15}}{2*3}=\frac{0-10\sqrt{15}}{6} =-\frac{10\sqrt{15}}{6} =-\frac{5\sqrt{15}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{15}}{2*3}=\frac{0+10\sqrt{15}}{6} =\frac{10\sqrt{15}}{6} =\frac{5\sqrt{15}}{3} $
| 20+7k=6 | | 8x+35+8x+35=180 | | 0=-3.5t^2+210t | | 10x+25+8x+35=180 | | 2/3n+7/2=14 | | 12x^2+50x+50=0 | | 3/2n+2/7=14 | | X=-2+4x5 | | (7/12x+4)-(10/12x-11)+(9/12x-9)= | | 8x+35=180 | | 16y+7=119 | | 3/2n+7/2=14 | | -30=60x | | 3x^2-84x+588=0 | | 2(x-9)=5x+18 | | 0,5x+3,5=-x-1 | | -6x+10+10x-8=22 | | (7/12x+4)-(5/6x-11)+(3/4x-9)= | | 9y+15=114 | | 8-(m+6)=6 | | 32=x/12 | | 5125x−1=(18)−4−x. | | d=400=2.5 | | x^+18x+81=0 | | 2x-5(3x-1)=1+3(2-3x) | | (x+16)=4x-5 | | x+16x+10x=180 | | (11/15x-21)-(2/5x+16)= | | (11/15x-21)-(2/5x+16)=0 | | 6(x+2)=2x-12 | | 59+2x=90 | | 73+79+x=90 |